Stochastic Information Gradient Algorithm with Generalized Gaussian Distribution Model

نویسندگان

  • Badong Chen
  • José Carlos Príncipe
  • Jinchun Hu
  • Yu Zhu
چکیده

This paper presents a parameterized version of the stochastic information gradient (SIG) algorithm, in which the error distribution is modeled by generalized Gaussian density (GGD), with location, shape, and dispersion parameters. Compared with the kernel-based SIG (SIGKernel) algorithm, the GGD-based SIG (SIG-GGD) algorithm does not involve kernel width selection. If the error is zero-mean, the SIG-GGD algorithm will become the least mean p-power (LMP) algorithm with adaptive order and variable step-size. Due to its well matched density estimation and automatic switching capability, the proposed algorithm is favorably in line with existing algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL

  Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...

متن کامل

­­Image Segmentation using Gaussian Mixture Model

Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm.   In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...

متن کامل

Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation

 Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...

متن کامل

A Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data

This paper presents a novel unifying framework of anytime sparse Gaussian process regression (SGPR) models that can produce good predictive performance fast and improve their predictive performance over time. Our proposed unifying framework reverses the variational inference procedure to theoretically construct a non-trivial, concave functional that is maximized at the predictive distribution o...

متن کامل

Multichannel Blind Deconvolution Using a Generalized Exponential Source Model

In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to unknown sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized exponential source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Circuits, Systems, and Computers

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2012