Stochastic Information Gradient Algorithm with Generalized Gaussian Distribution Model
نویسندگان
چکیده
This paper presents a parameterized version of the stochastic information gradient (SIG) algorithm, in which the error distribution is modeled by generalized Gaussian density (GGD), with location, shape, and dispersion parameters. Compared with the kernel-based SIG (SIGKernel) algorithm, the GGD-based SIG (SIG-GGD) algorithm does not involve kernel width selection. If the error is zero-mean, the SIG-GGD algorithm will become the least mean p-power (LMP) algorithm with adaptive order and variable step-size. Due to its well matched density estimation and automatic switching capability, the proposed algorithm is favorably in line with existing algorithms.
منابع مشابه
IMAGE SEGMENTATION USING GAUSSIAN MIXTURE MODEL
Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we have learned Gaussian mixture model to the pixels of an image. The parameters of the model have estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image is made by Bayes rule. In fact, ...
متن کاملImage Segmentation using Gaussian Mixture Model
Abstract: Stochastic models such as mixture models, graphical models, Markov random fields and hidden Markov models have key role in probabilistic data analysis. In this paper, we used Gaussian mixture model to the pixels of an image. The parameters of the model were estimated by EM-algorithm. In addition pixel labeling corresponded to each pixel of true image was made by Bayes rule. In fact,...
متن کاملParameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملA Unifying Framework of Anytime Sparse Gaussian Process Regression Models with Stochastic Variational Inference for Big Data
This paper presents a novel unifying framework of anytime sparse Gaussian process regression (SGPR) models that can produce good predictive performance fast and improve their predictive performance over time. Our proposed unifying framework reverses the variational inference procedure to theoretically construct a non-trivial, concave functional that is maximized at the predictive distribution o...
متن کاملMultichannel Blind Deconvolution Using a Generalized Exponential Source Model
In this paper, we present an algorithm for the problem of multi-channel blind deconvolution which can adapt to unknown sources with both sub-Gaussian and super-Gaussian probability density distributions using a generalized exponential source model. We use a state space representation to model the mixer and demixer respectively, and show how the parameters of the demixer can be adapted using a g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Circuits, Systems, and Computers
دوره 21 شماره
صفحات -
تاریخ انتشار 2012